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LElTER TO THE EDITOR 

On the dynamic localization in ID tight-binding systems 

Nguyen Hang Shont and H N Nazarenot 
lnternalional Centre of Condensed Mailer Physics, Universidade d e  Brasilia, 7W10-9W 
Brasilia, Brazil 

Received 17 August 1992, in hnal form 14 October 1992 

AbslracL Ihe dynamic localization of electrons induced simultaneously by DC and AC 
electric helds in the classical limit is investigated. Scattering processes are taken into 
account. I t  is shown that the localization induced by one field cdn be suppressed by 
another one when nR = w (w is the Stark frequenc, and R is the AC held frequenq). 
Ihe localization is also effectively deslmyed by sfaltering processes. 

It is well known that, in the uniform electric field E, the electron motion in a 
periodic potential undergoes Bloch oscillations with the Stark frequency w = eEa 
(where a is the period of the potential and h = 1). In the quantum limit, when 
w > A (A is the allowed band width), the Bloch oscillations manifest themselves in 
the form of discrete eigenstates in the electron energy spectrum (Stark ladder). The 
wavefunction of the Stark-ladder states is found to be localized (see for example [1,2] 
and references therein). This phenomenon is called dynamic localization. 

In the classical limit, when w << A, these discrete eigenstates do not manifest 
themselves; however, electron motion remains finite. Their trajectories are confined 
to some region with the characteristicsize L - A / e E .  In this sense this phenomenon 
is also called dynamic localization [3,4]. A similar situation can arise in  the AC electric 
field. For this localization the ratio between the field amplitude F and field frequency 
R has to satisfy the additional condition [3] 

J,(w,/Q) = 0 ( w F  = e F a  <A) (1) 

where .I,,(*) is the Bessel function of nth order. The behaviour of electrons in the 
classical limit can be treated semiclassically, i.e. described by the classical equation 
of motion, by the classical kinetic equation, etc. Note that in [3,4] the dynamic 
localization was considered in the collisionless limit, where the collision frequency 
U = 7-l -+ 0 (T is the scattering time). 

In this paper we consider the dynamic localization of electrons induced 
simultaneously by DC E and AC F ( t )  = Fsin(Rt  + i p )  electric fields ( ip is the 
initial phase of field). We will consider the one-dimensional tight-binding systems, 
where the electron energy spectrum has the form 

E k ( t )  = Acosk( t ) a  (2) 

t Permanent address: National Instilule for Alomic Energy, 67 Nguyen Du, Hanoi, Vietnam. 
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As is well known, this model appropriately describes the electron behaviour in 
quantum wires or in one-dimensional superlattices. As in the [3,4] we restrict 
our investigation to the classical limit, when w and wF << A and the electron 
behaviour can be described by the classical equation of motion. The scattering 
processes will be taken into account. It will be shown that, even in the collisionless 
limit, the localization induced by one field can be suppressed by another one when 
w . =  nR (Stark resonance). The localization can be also effectively destroyed by 
scattering processes. Note that similar effects are well known in the theoryof statistics 
localization [SI. 

?b be specific we start with a well localized state a t  a particular site in the system 
at t = 0 and obtain the time evolution of the wavefunction or probability propagator 
$,(t). We say that localization takes place if, for large times, the probability 
propagator at this site remains finite. In contrast, if this amplitude goes to zero we 
conclude that diffusion takes place in the system. Similarly, the localization will take 
place if, for large time, the mean square displacement (d) = Cr=p=u+n(t) remains 
finite. If the mean square displacement increases without bound the localization is 
destroyed. Following the method proposed in [4] we start from the equation for the 
expansion coefficients C,( t )  of the wavefunction 

C,(t) = C,(O)exp[ - i l t~ , . ( t ’ )d t ’ ] .  (3)  

The electron behaviour is described by the classical equation of motion: 

where ko = k ( t  = 0). The solution of equation (4) has the form 

e F r 2 f l  [e-‘/r cos (o - cos(0t + p)] 
+ 1 + rza2 

Substituting equations (2) and (5) into (3) and performing the relevant calculations 
as in [4] we obtain the resulting expression for the probability propagator $ , ( t )  and 
mean square displacement (mz )  as follows: 

where 
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and 

b ( t ) = w r ( l - e - ' / T ) +  wFr ( s i n ( R t + p ) - e - ' / r s i n q )  
1 + nzr2 

First let us consider the collisionless regime (U = r-' = 0). In this limit the function 
b ( t )  assumes the form 

(11) b ( t )  = ut - -cos(Rt W F  + p). n 
By using the following identities: 

00 

~ s ( a  f bcos L) = ms(a)J , (b)  + 2 (12) 

sin(a f bcosz)  = sin(a)Jo(b) + 2 J,( b)sin (13) 

J,(b) cos (a f 2 
lI=l 
m 

n = l  

we get the following expressions for the functions u( t )  and u( t ) :  

sin[f(w + nn)t + n(p-  $)]sin[f(w + n n ) t ]  
w + n Q  

1. (15) 
sin[f(w - n n ) t ] s i n [ f ( w  - nO)t  - n ( q  + $)] 

w - n o  + 
Equations (6) ,  (7), (14) and (15) recover the resulu of [3] and [4] in the limit E = 0 
and F = 0 respectively. Equations (14) and (15) show that, generally, u ( t )  and u ( t )  
are bounded oscillatory functions of time with all frequencies w f n n  (n  = 0 , 1 , 2 . .  .). 
However, when w = nfl (n = 1,2,3.  ..) these functions contain terms which are 
linearly proportional to the time 1. For large time (t > a-') these terms give the 
main contributions to u ( t )  and v ( t )  and they make $ , ( t )  -+ 0 and (m') + W. The 
dynamic localization in this case is completely destroyed. For example, for w = 
and 1 B a-' one gets 

u( t )  '5 J , (w, /Rj t s inq  
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Note that, though u(t) and u ( t )  are dependent on the initial phase 9, the probability 
+,(t)  and mean square displacement (m’) do not depend on it. In figure 1 the 
mean square displacement as  a function of the dimensionless time Qt for several 
values of p = w/Cl is depicted. We can see that for p = A,&, the mean square 
displacement remains a bounded function while for p = 1,2, these curves rise to 
infinity. For computational calculations the ratio w F / Q  was set equal 2.405 as is 
required for the usual localization 131, and for simplicity ‘p was set equal to zero. 
This remarkable effect of suppressing the localization produced by a DC field by the 
superposition of an AC field can be understood by taking into account the fact that 
both harmonic motions come to resonance when w = nQ. Naturally for higher 
harmonics this effect is weaker as can be seen in figure 1. 

I 

Figure 1. The mean square 
displacement for the follow- 

/ W F / ~  = 2.405, = 0 
culve 1, tl = 1; curve 2. 
p = di; cume 3, = Js; 

i s  nt cume 4, p = 2. 

Thking account of scattering processes (U # 0) the analytical solution can be 
obtained in the case of DC electric field (F = 0). In this case we have 

b ( t )  = w ~ ( 1  -e-‘/‘) (20) 

d ( t )  + u’ ( t )  = T’{[Si(w.re-‘/r) - s~(wT)]’ + ci(wTe-‘IT) - ~ i ( w ~ ) ] ’ )  (21) 

where Si( z) and Ci( z )  are the sine and cosine integrals. In the strong-scattering limit: 
W T  < 1 from equations (6), (7) and (21) we have (t >> T) 
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These results show that in the strong-scattering limit the probability propagator ?b,(t) 
goes to Zero and the mean square displacement (d) goes to infinity. The localization 
is suppressed. These results coincide with the results for the field-free case (E = 0) 
[3,4]. This fact shows that in the strong-scattering regime, as in the field-free case, 
electric cunent cannot Row through the sample. In figure 2 we show the mean 
square displacement as a function of the dimensionless time tw for several values Of 
E = W T .  We can see that on decreasing ( (increasing the scattering) the localization 
is suppressed. 

2 

Figure 2. The mean square 
displacement for the follow 

C U N e  1, E = 1M; cuwe 2. 
E = 10; curve 3, E = 1. 

A similar situation arises in the case of an AC electric field (E = 0). The mean 
square displacement as a function of R t  for several values = R r  is depicted in 
figure 3. As in figure 1, the ratio wF/R  is set equal to 2.405 and ~p = 0. 

lb conclude the present work we note that 1D systems such as quantum wires 
and superlattices of very high quality can be grown, so theoretical models like the 
one presented here can be applied for real systems. At the same time non-linear 
phenomena like Bloch oscillations and negative differential conductivity [6] would 
be observed experimentally. In this work we have considered the general case of 
superposition of DC and AC electric fields as well as allowing for scattering to take 
place. As far as we know this is the first time that such a complete treatment of 
dynamic localization in ID has been presented. Finally we would like to point out 
that there is a revival in interest in this subject, which can be measured by the number 
of papers coming out recently [7-91. 



U16 Letter to the Editor 

Figure 3. The mean square 
displacement for the follow- 
ing parameters: cuwe 1. { = 

,,2 ;.. 
:: 100; CUWe 2, { = 10; C U N C  
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